If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-14x-40=0
a = 4.9; b = -14; c = -40;
Δ = b2-4ac
Δ = -142-4·4.9·(-40)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14\sqrt{5}}{2*4.9}=\frac{14-14\sqrt{5}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14\sqrt{5}}{2*4.9}=\frac{14+14\sqrt{5}}{9.8} $
| 12x+5x=250+12x | | -1/6x7=13 | | 8x+13=13+3x | | 8x-10+14x-94=180 | | (5x+1)÷13=(x-3)÷11 | | x-100=210 | | n+(-8)=50 | | 5x-10=+30+15x | | 12v−16=–4(–3v+4) | | 16d=8(2d+11) | | 5x+1/13=x-3/11 | | -9y=33 | | 5(1+s)=−9s+6 | | -3x=96+3x | | T.5(2t+4)=100 | | 6b+5=b+15 | | 27.1=5n-3 | | 5/6x-4/3=2 | | -1+4x-6x=1-x | | 5t-13=180 | | 3(14c+1)+4c=3 | | 5x=3x-2-(2x+6) | | 14u+20-5=15 | | t+5=3t-9 | | t^-7t+6=0 | | x+3(x+5)=2x-3 | | 4x-2(-5x+1)=30 | | Y+9/4-6y-9/14=-4 | | 4(w-1)=8w+4-2(-5w-1) | | j-4=3j-9 | | -9+(-u-9)=9 | | 9/10x-5/4=2 |